1 Sheet 3

1.1 Excercise 1

Recall that a group G is called abelian if gh = hg for all g,h € G, or in other words, if G = Z(G).

(a) Show that if a Lie group G is abelian, then its Lie algebra g is also abelian.

(b) Show that the converse also holds if G is connected.

Solution. (a) Since the Lie group G is abelian, Ad, = idg for all g € G. Then the adjoint representation (of
the group) of G sends every element g € G to the identity in GL(g). This means that the adjoint representation
(of the algebra) X +— adx is the differential of a constant map, so it is zero.

(b) If the Lie group G is connected, then it is generated by the image of the exponential map. The claim then
follows from Baker—Campbell-Hausdorff’s theorem. Alternatively, we can avoid using the Baker—Campbell—-
Hausdorff’s theorem by "reversing" the proof of (a). Precisely, if the Lie algebra g is abelian, then Then the
adjoint representation of the group has the same differential as a constant map from G to GL(g). Since G is
connected, we conclude by Theorem 4 (a) in the notes that the map G — GL(g), g — Ad, . is constant. In
other words, we have Ady . (X) = AX for all X € g and g € G. In particular Ad. .(X) = X, so that A = 1,,.
Applying Theorem 4 (a) again, we conclude that Ad, itself is the identity map of G.

1.2 Excercise 2

Show that if a Lie group G is abelian and connected, then the exponential map
exp:g— G

is surjective. Conclude that G = g/T" for a discrete additive subgroup I' C g.|

(above, discrete refers to the topological property, i.e. in which any point is its own open subset; we say that X
s a discrete subset of a topological space M if the latter can be covered by open subsets which intersect X in

either zero or one point).

Solution. The first statement follows from the fact that the image of the exponential map exp : g — G
generates G as a Lie group, and Baker—Campbell-Hausdorff’s theorem.

Now consider the exponential map as a surjective homomorphism of Lie groups. Then its kernel I' is an additive
subgroup of g, and G = g/T" holds as an isomorphism of Lie groups. Finally we prove that I" C g is discrete.
Let U C g be an open neighborhood of zero, such that the restriction

exp: U — exp(U)

is a diffeomorphism. In particular, ker(exp) N U = {0}, so that the singleton {0} is open in ker(exp). We
conclude by applying left multiplication.

1.3 Excercise 3

The standard example of the situation in the previous problem is g = R and G = S;. What about in the

complex case, what are the possible complex abelian Lie groups G with g = C?



Solution. These Lie groups are quotients G = C/I", where I is a lattice. If " has rank 1, then G = C*. If T’
has rank 1, then G is a one dimensional complex torus (that is, a riemann surface of genus one, endowed with
a group structure). It turns out that

C/T1 2C/T

if and only if there is a complex number v € C* such that I'y = yI's. By using this, one can see that each
isomorphism class of these groups contains a unique representative of the form C/(1,7), where (1,7) is the
lattice generated by 1 and 7, and 7 falls in the region

{reC||[Im(7)| >0,|Re(7)| < =, |7| > 1}.

N =

1.4 Excercise 4

Recall that a topological space M is called simply connected if it is

e (path)-connected, i.e. any two points of M can be joined by a (continuous) path ~:[0,1] - M

e any two paths v,7" : [0,1] — M with the same start and end points v(0) = +/(0),v(1) = +/(1) can be
related by a (continuous) homotopy

H:[0,1] x[0,1] = M
such that H(¢,0) = ~(t), H(¢,1) = ~/(¢t) and H(0,t) = v(0) = ~/(0), H(1,t) = v(1) = +/(1) for all ¢

(intutively, we think of H; = H(—,t) as giving us a family of paths that connect the paths v and +/, all
the while keeping the endpoints fixed).

Excerise 4. Work out the details in Theorem 4.(b) in class.

Solution. EI We have an homotopy

H:[0,1] x [0,1] = M

such that
e H(t,0) is a path through the g/s,
e H(t,1) is a path through the g;s,
e H(s,0) =eand H(s,1) =g.

t

4 g.

]

ITake a look at Chapter 3 of [?] for further details.



One can prove that there exists a positive integer N such that

H(s,t)H(s',t')"' € U for all |s — 5’| < 2/N, |t —t'| < 2/N.

(1)

Then we decompose [0, 1] x [0, 1] in a grid as in the picture. We have points k/N on the s-axis, for k =0,..., N—1,
and we have points [/N on the t-axis, for { = 0,..., N. In this way, every square in the grid has edge of 1/N.
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where 7(s,t) is represented in the picture above . Order this sequence of paths as follows
H(0,t) = Bo,o(t), Boa(t), Boz(t),. .., Bon(t),
B1o(t),B11(t),.cvevn... ,B1,n (1),
......... ,Byn_1,n(t), H(1,t)
The paths By ;(t) coincides with By ;41(t) for ¢ = 0, %, cee Z_Tl, HTl, ..., 1. The same is true for B x and
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Then
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(3)
is well defined because of , and it is constant along the above sequence of paths. This completes the proof

modulo verifying independence of our construction from the chosen partition of [0, 1] x [0, 1].
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